

Sisyphus

Redefining Low Power for LoRa Receiver

Han Wang, Yihang Song, Qianhe Meng, Zetao Gao, Chong Zhang and Li Lu

^{*}Sisyphus is a character from ancient Greek mythology who kept pushing a boulder up a mountain and finally found special meaning in meaningless things

LoRa – a key cog to enable the ubiquitously connected world

The LoRa and LoRaWAN IoT market will reach **US\$ 5.7 billion** in 2024, expected to surge at a CAGR of **35.6%** from 2024 to 2034 [1].

Precision Agriculture

Smart City

Industrial IoT

Long-range

Low-power

Anti-interference

[1] https://www.futuremarketinsights.com/reports/lora-and-lorawan-iot-market

Empirical testing reveals that:

Class A and B -- extremely low duty-cycle

~ 1500 mAh

~ 225 mAh

battery life > 5 years 😊

Class C?

LôRaMAN - Class C mode

Forest fire-alarm

Toxic material monitoring

Sensor-less sensing in the wild

Necessitate long-term and around-the-clock operation!

Utility power is not always available

If powered by a battery, it will only sustain a matter of hours to days (16)

Reducing the <u>runtime</u> power of LoRa

LoRa Backscatter [UbiComp '17]

PLoRa [SIGCOMM '18]

P²LoRa [MobiCom '21]

LoRa-based backscatter systems reduce the power of uplink LoRa transmission by 100µW-level

The downlink now becomes the power-saving bottleneck!

Example 1 – legacy LoRa receiver

Superheterodyne architecture requires bulky components consuming intensive power ②

Transformation

Addressing the <u>downlink</u> runtime power issue of LoRa

Existing work: Saiyan^[1] – passive non-coherent demodulation

(Improve demodulation sensitivity)

[1] Saiyan: Design and implementation of a low-power demodulator for {LoRa} backscatter systems. In 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22) (pp. 437-451).

ERA Primer 2 – chirp spread spectrum (CSS) technology

Observation: an f_i corresponds to a specific f_{sh} due to the inherent chirp **geometric** feature

$$t_i^0 = \frac{BW - f_i^0}{k} = \frac{2^{SF} - i_0}{BW}.$$

Design > overview

Sisyphus addresses the <u>downlink</u> LoRa power issue while retaining dechirping ability

Insight: time localization LoRa demodulation

- ✓ Passive dc²
- ✓ Low-power demodulator hardware
- ✓ Compatible with COTS LoRa

Problem:

Passive one-shot <u>down-conversion</u> and <u>de-chirping</u> (dc²) while reserving the demodulation feature for LoRa demodulation

Problem:

Passive one-shot <u>down-conversion</u> and <u>de-chirping</u> (dc²) while reserving the demodulation feature for LoRa demodulation

Solution:

Collaborative helper signal waveform design

Solution:

Collaborative helper signal waveform design

Problem:

How to demodulate post-dc² signals with negligible power consumption

Through digital signal processing? (e.g., wavelet transform, STFT and etc.)

Power-consuming and defeat our original purpose

Solution:

Analog-digital hybrid demodulation

- ✓ Feature conversion based on passive RC filter
- ✓ Digitization based on passive rectifier and low-power comparator
- ✓ Data bit extraction based on low-load PWM signal duty-cycle calculation

Problem:

Backward compatible with COTS LoRa

Observation 1:

Signal frequency over-the-air = baseband freq. + carrier freq. (CF)

Our desired helper (LoRa-incompliance)

shifting frequency = f_i + BW/2

Base up-chirp (LoRa-compliance)

Can we get the desired helper signal by directly applying a frequency shifting on the RF signal?

Problem:

Double sideband overlapping

Problem:

Double sideband overlapping

21

Observation:

The CF of COTS LoRa module can be customized via register

4.1.4. Frequency Settings

Recalling that the frequency step is given by:

(P36 in the datasheet of SX127X chip)

$$F_{STEP} = \frac{F_{XOSC}}{2^{19}}$$

In order to set LO frequency values following registers are available.

 F_{RF} is a 24-bit register which defines carrier frequency. The carrier frequency relates to the register contents by following formula:

$$F_{RF} = F_{STEP} \times Frf(23,0)$$

Solution:

Modify CF and compensate its variation to amplify the shifting frequency to avoid overlapping between the two mirror copies.

Solution:

Modify CF and compensate its variation in the shifting frequency

23

Implementation

- 37mm×24mm 4-layer FR4 PCB
- 2 versions:
 - ☐ Sisyphus+: IF amplifier ON
 - Sisyphus: IF amplifier OFF

Evaluation > power breakdown

- ✓ 530× reduction compared to IC-based legacy LoRa receiver
- √ 4.9×, 1.8×, 129× reduction compared to demodulation-disable LoRa-based backscatter systems' downlink
- ✓ Power of IF amplifier: 286 µW

Evaluation > receiving sensitivity

Sisyphus

Sensitivity: -36dBm

6dB gain with IF amplifier ON

Evaluation > real-world end-to-end evaluation

Experimental setup:

■ Transmission power: 20dBm;

■ LOS Tx antenna gain: 6dBi, Rx antenna gain:3dBi.

3× improvement range compared to ED-based receiver

Evaluation > real-world end-to-end evaluation

Goodput

Indicating the BER in different time and locations

Comparative goodput with legacy receiver

Evaluation > impact of passive filters and diode

Why?

More BW, more distinguishable sub-symbols; And CF will impact the conversion loss of diode in our circuit.

BW↑ and CF↑, performance↑

Evaluation > interference immunity

Setup:

Send helper+data along with in-band jamming signals within an RF cable

Sisyphus can achieve accurate communication with 0.8dB JSR

Takeaway

- ✓ The low-power promise of LoRa can only be delivered in Class A and B, in other words, LoRa is NOT always low power!
- ✓ Sisyphus enables the first ultra-low-power LoRa receiver design with de-chirping ability
- ✓ Sisyphus can be compatible with legacy LoRa

31

MobiCom 2024

Sisyphus: Redefining Low Power for LoRa Receiver

Thanks for your attention! 🥦

Han Wang wang_han@std.uestc.edu.cn

hwang620.github.io

Q&A