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ABSTRACT

The Internet of Things (IoT) can only thrive if IoT sensor nodes
can be effortlessly deployed and maintained without compromising
their general-purpose nature. However, existing low-power sensor
systems fail to strike a balance between these two issues, leaving the
widespread of IoT sensor nodes as an open problem. In this paper,
we propose LEGO+ as a minimalist yet general-purpose sensing
edge-end architecture. Instead of running embedded software on
a redundant general-purpose microprocessor, LEGO+ can directly
construct the desired control functionality for various IoT sensing
applications through hardware-level logic orchestration. To achieve
this, we first conduct an in-depth analysis of the underlying unit
behaviors within IoT sensor systems and, based on this, abstract a
uniform logic orchestration model. Next, to enable sensor nodes
to comprehend and execute the generated logic, we devise a hier-
archical atomic control circuit with negligible overheads. Finally,
we develop a task state prediction scheme to further improve the
overall operation efficiency among multiple nodes. We prototype
LEGO+ for proof-of-concept and conduct comprehensive exper-
iments, and the results demonstrate that LEGO+ can reduce the
overall power consumption of sensor nodes by 86% and enhance
task efficiency by 49%, thereby facilitating a wider array of IoT
sensing applications.
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« Computer systems organization — Sensor networks; High-
level language architectures; « Hardware — Programmable logic
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1 INTRODUCTION

As of 2023, the global population of Internet of Things (IoT) connec-
tions reached approximately 17 billion, and this figure is projected
to grow to 29.7 billion by 2027, representing an annual growth
rate of 11% [2]. The ever-increasing IoT applications enable people
to access a plethora of information from the vast physical world
through ubiquitous sensing technologies, which facilitates interac-
tions that transcend spatial boundaries, including precision agricul-
ture [11, 40], smart city [32, 39] and environmental monitoring [1, 6].
The demand for massive sensing applications calls for large-scale,
long-term, and low-cost data acquisition [19, 28, 42, 43], which
requires IoT sensor nodes to be designed to satisfy the following
three requirements.

@® Minimalist architecture. Large-scale applications require sen-
sor nodes to be designed as simply as possible with low-power
consumption to minimize deployment and maintenance costs.

@ Ubiquitous adoption. Sensor nodes ought to be adapted to a
wide range of application scenarios to support diverse sensing
tasks corresponding to different sensor chips and communication
performance requirements.

® High task efficiency. The node should be designed simultane-
ously to be both low-cost and high-efficiency without impairing
the nodes’ task efficiency brought by its simplified architecture.
Otherwise, it may not pay for itself.

If achieved, IoT sensor nodes can be widely spread and set up as
easily as dandelion seeds in the wind, thereby enabling seamless
ambient sensing and data collection at any given time and loca-
tion. However, to the best of our knowledge, there is no existing
architecture that satisfies the target.

Specifically, as illustrated in Figure 1(a), to meet the requirements
of versatile IoT applications, traditional sensor nodes have to rely
on general-purpose computing platforms centered on embedded
processors, so that they can control various sensor chips (e.g., sensor
chips) by running their application-specific embedded software [12].
However, in such an approach, the required control logic for the
target application is essentially "simulated" by running embedded
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(b) IoT sensing edge-end system with existing processor-free node.

Figure 1: Architecture of two existing IoT sensor systems.
The brute-force approach of completely shifting processor
functionality, adopted by the processor-free IoT sensor node,
cannot touch the root cause of the redundancy issue suffered
by traditional processor-centric IoT sensor nodes.

programs on a general-purpose computer platform!. Hence, the
microprocessor-based architecture exhibits good versatility, but
it is practically inefficient for lightweight sensing tasks due to its
complex architecture. That is, when coping with low task loads
in commonly simple yet ubiquitous applications (e.g., temperature
sensing), its energy consumption does not reduce proportionately
as the workload decreases. Besides, for its applications, developers
also need to customize the program whenever sensor chips are
to be integrated into different types of microprocessors, which
increases the development difficulty and thus limits the reduction
of application costs.(contrary to ®)

For this issue, numerous efforts have been made, referred to as
processor-free architecture [26, 27, 38, 44], aiming to simplify the
architecture by replacing the local microprocessor with a specially
designed signal conversion mechanism, so that users can directly
read digital [21, 22] or analog sensor chips [5, 20] on the node
through a nearby gateway using wireless signals, as shown in Fig-
ure 1(b). However, such a solution essentially still relies on a remote
microprocessor on the gateway side to read on-node sensors. Con-
sequently, a large amount of raw information that was originally
exchanged between the processor and sensor chips is transferred to
the air interface, resulting in a surge in communication overhead.
Therefore, for low-power considerations, those efforts are primarily
confined to specific scenarios employing low-power, yet vulnerable
and short-range backscatter communications.(contrary to ®)

More seriously, as all control and data processing have been
shifted to the gateway, such a processor-free approach cannot be
applied to scenarios with stringent real-time requirements. For
instance, even a task as simple as a button-pressing operation on

The microprocessor is essentially a single-chip microcomputer that incorporates the
Harvard (or von Neumann) architecture, featuring a complete structure comprising
an Arithmetic Logic Unit (ALU), memory (RAM, ROM), Input/Output (I/O) interfaces,
and other necessary components, albeit with simplifications specifically in hardware
specifications [13, 18, 34]
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the node necessitates a must-round trip to the gateway, not to
mention that fewer tasks can be executed for a given bandwidth
that is already scarce. (contrary to ®)

In this paper, we rethink the underlying logic of IoT sensor
node control and propose LEGO+, a novel cost-efficient edge-end
architecture for next-generation IoT sensing systems. Specifically,
we redesign the sensing architecture and simplify the sensor node
from a highly complex, independent embedded computer system
into a simple smart wireless peripheral of the gateway. Instead of
relying on general-purpose computing platforms to run embedded
programs that "indirectly” simulate the control logic required for
target applications, LEGO+ directly outputs the target control logic
on sensor nodes by orchestrating unit control logic at the minimal
hardware level, akin to constructing with LEGO bricks.

By this, the design of LEGO+ not only simplifies the architec-
ture but also streamlines the development process. To scale the
system, developers only need to plug in new sensor chips and
focus on the implementation of the sensing task itself, without
having to develop the specific microprocessor program. Besides,
as LEGO+ directly generates control logic in hardware, which is
more efficient than indirectly "simulating” it through the execution
of embedded programs, it enables more efficient operation with a
simplified architecture and is thus helpful for reducing costs and
power consumption in large-scale applications.

However, putting LEGO+ into practice requires to address the
following technical challenges:

Challenge 1. First, it is hard for a LEGO+ node to provide the
required control logic for diverse applications without relying on a
general-purpose computer platform. Specifically, the control func-
tional requirements for massive sensor node applications vary sig-
nificantly, including the scheduling of their onboard sensor chips
and data processing operations. To accommodate these heteroge-
neous control requirements, as discussed before, existing sensor
nodes have to execute the corresponding specified embedded con-
trol programs running on either a local general-purpose micropro-
cessor or its gateway-side counterpart.

In LEGO+, we conduct an in-depth analysis of the task logic of
IoT sensor nodes and devise a novel Hierarchical Sensing Model.
Specifically, the sensing tasks executed on the nodes can be broken
down into orchestrations of unit operations (we call them atomic
operations, i.e., AtOps) across two distinct levels: the App. task layer
and the chipset layer. Building upon this, on the gateway side, we
develop a handy Hierarchical Task Description Language (HTDL),
accompanied by a lightweight compiler. This combination allows
for the uniform description and construction of heterogeneous
control logic for a variety of sensing applications by orchestrating
these AtOps. On the node side, we build a Hierarchical Atomic
Control Circuit (HACC) that parses instructions from the gateway
and provides direct atomic logic combinations tailored to diverse
sensing tasks at the minimal hardware level while ensuring minimal
communication overhead with the gateway.

Challenge 2. It is non-trivial for LEGO+ to handle multi-node
task hardware-level coordination without relying on the general-
purpose computer platform. Specifically, for large-scale deploy-
ments, severe signal collisions may occur when multiple sensor
nodes upload their data concurrently, which would decrease the



LEGO+: Redefining the Redundancy Removal for loT Sensing Edge-End Systems

MobiSys ’25, June 23-27, 2025, Anaheim, CA, USA

LEGO+ Gateway ) () LEGO+ Sensor Node

LEGO+ = Command NG Radio HACC Sensor chips
o 5 compiler iogic generaton Bl | /conc Active I o
g B, 5 _Eg 5 { OnCISE) L’gRa @ * ands L Command ™% Task Iogic Underlying lj Temperat.ure
E % 2, £: 5| | Commands = dispatch  omr  memory levels sensor chip

52 S 8 a .ee 8

g2 5 . el = Gna-ior Base- o ‘ S ;
< 'S 28 Multi-node o band App- cyn‘;m%mw‘u:mm 5 oo atible Light
86 iz task planning &E|| valid data ™| buald p————— i sensor chip
£ ‘uzn &% Task Task assignment and E (Concise) r “er ayersenlsmg ?ontro CocL e- 2 Underlying :
IS & HoL Task management Voo i App. control ER dmi Chipset control 5 levels Other

library < e— Task scheduler - | . sensor chips

Figure 2: LEGO+ architecture, with system-level low redundancy and high general-purpose advantage.

network throughput and also increase energy consumption and
network delay. For this issue, in LEGO+, we design a novel task pre-
diction framework for coordinating multiple sensor nodes, which
helps the gateway to accurately forecast data upload time slots
for individual sensor nodes by leveraging their unique hardware
profiles and task characteristics. Thus, the gateway optimizes the
task scheduling for surrounding sensor nodes and effectively avoids
data-uploading collisions.

We implemented a comprehensive sensing edge-end system pro-
totype with the edge gateway implemented on Raspberry Pi and the
on-node HACC implemented on ultra-low-power FPGA. HACC’s
control logic part (excluding registers) only takes 2.6 k logic gates.
With its ultra-simple architecture, the LEGO+ nodes reduce 86%
power consumption compared to traditional processor-centric ar-
chitectures and exhibit a 4.5x task efficiency compared to previous
processor-free architectures. Our contributions are as follows:

@ We reveal the underlying cause of redundancy and argue that the
brute-force approach employed by the processor-free architec-
ture, which shifts control to a remote processor on the gateway
with huge communication overhead, is not practical.

® We summarize all the task logic of versatile IoT sensing applica-
tions and induce it into a few AtOps, and directly assemble the
required logic and execute it by orchestrating these AtOps on
our newly designed Hierarchical Sensing Model and the HACC,
respectively.

® We design a lightweight task prediction framework to efficiently
coordinate the control of multiple sensor nodes without the need
for a general-purpose microprocessor on each node.

® We undertake extensive system implementation and comprehen-
sive real-world scenario testing to substantiate the viability and
efficacy of the novel LEGO+ architecture, which involves the
direct atomization and orchestration of task logic at the hard-
ware level, rather than relying on embedded software running
on complex general-purpose computer platforms.

2 LEGO+IN ANUTSHELL

As shown in Figure 2, a LEGO+ system architecture includes a
gateway and multiple sensor nodes, simply put as follows.

2.1 LEGO+ Gateway

The gateway entity in this system can be any sensor node with a
communication interface that can be configured with the appropri-
ate operating environment. As presented in the left part of Figure

2, the gateway consists of three components: Hierarchical Sensing
Model, Task Scheduler, and radio frequency (RF) front-end.

1) Unified atomized logic orchestrator. It entails the atomized
orchestration of atomic control logic on the sensor node, which
contains a handy hierarchical task description language (HTDL),
along with its lightweight compiler. The syntax of HTDL encom-
passes a suite of atomic operation (AtOp) keywords, facilitating a
unified description of the heterogeneous data processing and sensor
control logic inherent in the node. The language structure of HTDL,
in this paper, is divided into an App. task layer and a chipset layer.
The App. task layer serves to articulate the logic for node-scale data
acquisition, data processing and transmission, while the chipset
layer is to describe the underlying signal interaction logic for on-
board sensor chips. The HTDL compiler is designed to transform
the task logic in the HTDL sensing control profile into binary bits,
which can be recognized by the HACC. We also elaborated the
encoding format for every command to minimize the downlink
communication overhead. The details are presented in § 3.

2) Task scheduler. To coordinate tasks on multiple sensor nodes,
we design the task scheduler with a task prediction framework.
Based on the hardware profiles and task characteristics of the target
sensor nodes, the scheduler can predict the time slot for each sensor
node to upload sensory data. Then, it will make a timeline plan
for the uplink-downlink communication between the gateway and
sensor nodes to avoid data collisions and improve efficiency in
handling tasks on more sensor nodes without requiring a local
processor on each node.

3) RF front-end. The communication technology is not confined
due to LEGO+’s optimized communication overhead, which can be
active radios, including but not limited to LoRa, WiFi, and BLE, and
passive radios (e.g., backscatter).

2.2 LEGO+ Sensor Node

LEGO+ node is accountable for sensing environmental data, per-
forming pre-processing on the data, and then uploading processed
valid data to the gateway. As presented in the right part of Figure
2, It has three parts, including HACC, sensor chips, and radio.

1) HACC. With the microprocessor removed from the node, we
design the HACC to assemble the required logic by orchestrat-
ing atomized operations (AtOps) directly at the minimal hardware
level. The circuit contains three modules: command dispatch, task
logic memory, and dual-layer sensing control. When it works, the
circuit hierarchically stores gateway commands in the memory
through the command dispatch module and drives the dual-layer
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sensing control module to output corresponding control logic (i.e.,
sensor chip scheduling and data pre-processing) according to an or-
chestrated sequence generated by the Hierarchical Sensing Model.
In contrast to microprocessors, HACC can execute the general-
purpose task logic generated by the gateway, which is the crux
of the sensor node’s simplification, without sacrificing the gen-
eral purpose. It’s a low-redundancy, low-power computing circuit
specialized for versatile IoT sensing tasks.

2) Sensor chips. With the universal description for the IoT tasks
and implementation of HACC, LEGO+ node can support almost all
the commercial off-the-shelf (COTS) sensor chips for diversities of
sensing application.

3) Radio. LEGO+ nodes connect to the same network as the
gateway. Users can deploy the radio using a UART, SPI, or GPIO
interface to connect to the HACC.

3 HIERARCHICAL SENSING MODEL

One major barrier to simplifying IoT sensor nodes lies in the di-
verse sensing and control requirements of various applications, as
it requires the current sensor node control to rely on a general-
purpose computer platform with either a local microprocessor or
a remote one (located on the gateway). However, this approach
also poses difficulties in simplifying the node design (processor-
centric architecture), or is accompanied by huge communication
overhead (brute-force processor-free architecture). To settle this
issue, we analysis in-depth the task logic of IoT sensor nodes and
design a novel Hierarchical Sensing Model. It contains HTDL, along
with a lightweight compiler, to uniformly describe and construct
the heterogeneous control logic for diverse sensing applications.
As shown in Figure 3, we design the model by decomposing the
gateway-to-sensor node control logic into four layers, which are,
from top to bottom, as follows:

Task control layer. This layer of control logic is located at the
gateway side. Upon the initial operational startup of the system,
the gateway will issue tasks to the nodes in accordance with the
preset assignment strategy. Subsequently, the gateway will analyze
the incoming sensor node data and orchestrating the tasks of each
sensor node to guarantee the efficient system functioning.

App. task layer. In this layer, the node invokes the sensor con-
trol logic within the chipset layer to capture raw sensor data. It
then proceeds to pre-process the raw data according to commands
issued by the gateway. The outcome of this data processing deter-
mines the necessity and specificity of data uploading, determining
whether and which data should be uploaded to the gateway.

Chipset layer. The layer for sensing control, where nodes han-
dle diverse underlying signaling with sensor chips and provides
the sensor outputs to the App. task layer.

Sensor Chip layer. The bottom layer of the closed-loop control.
In fact, the sensor chips on the nodes function as the receptors
that receive control, where the interaction logic of the upper layer
(chipset layer) should be aligned with the internal state machine
logic and interface signals of the controlled sensor chip to achieve
control and data retrieval of the target sensor chip.

Guided by the theory of the hierarchical sensing model, we de-
sign the hierarchical task description language (as detailed in § 4),
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Figure 3: Execution process of Hierarchical Sensing Model.

task scheduler (§ 5) for generating sensing control logic on the gate-
way, and build a novel Hierarchical Atomic Control Circuit (HACC,
detailed in § 6) on the sensor node side to handle sensing task con-
trol by orchestrating atomized operations (AtOps) directly at the
minimal hardware level and with low communication overheads.

4 HIERARCHICAL TASK DESCRIPTION
LANGUAGE

To realize the offloading of task logic generation from the sensor
node to the gateway;, it’s imperative to design a universal description
of heterogeneous sensor node task logic.

Basic syntax demonstration. Leveraging the reduced sensor node
task model and hierarchical sensor node control framework, we
devise HTDL, which serves to articulate both the App. task logic
and the chipset logic of the node. The App. task layer syntax is used
to describe the data acquisition, data processing, and data upload
logic of the node. And the chipset layer syntax is responsible for
describing the sensor control logic such as bus read/write, pin level
read/write, and event detection. The keywords of the two layers can
be found in the anonymous link?. We show here an example of how
HTDL accomplishes the description of a specific task, as shown
in Figure 4. A dual-layer control profile for TMP125 temperature
sensor demonstrates that: with only 17 lines of code, it defines two
App. tasks and one sensor control task. The App. layer calls the data
obtaining function in lower chipset layer and performs accordingly
operation on the returned raw sensor data, and then upload the
valid reasonable data back to gateway.

These optimized profiles are stored in the HTDL repository,
where the gateway’s task scheduler dynamically retrieves required
configurations. The LEGO+ compiler then processes these profiles
to generate binary task command streams.

LEGO+ compiler design. In general, the LEGO+ compiler inter-
prets the dual-layer sensing control profile to formulate the local
control logic for LEGO+ nodes, as shown in Figure 5. Specifically,
for a given application, users will craft a profile that encapsulates
the control drivers for the chipset installed on the LEGO+ node
alongside the App. control logic. During runtime, the gateway se-
quentially parses the HTDL statements within this profile, wherein

The detailed syntax and coding map can be found from this anonymous link.
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App. task 1: Temp. & Interval jud,

1 task temp_between{

2 call(getTemp); \\Calling the temperature reading control task of TMP125

3 comb(@, signed, r[@][6:0], r[1][7:5]); \\The data is combined to get temperature data
4 between(5, 85, @); \\Judge whether Temp. data is within [5, 85)

5 upload(1@); \\ Upload the lower 10 bits of the processed result

6

}
App. task 2: Temp. collection & Amount-of-change threshold judgment

7 | task temp_sub_between{

8 call(getTemp); \\ Calling the temperature reading control task of TMP125
9 comb(@, signed, r[@][6:0], r[1][7:5]); \\ The dat:
10 sub_between(@, -3, 3); \\Judge whether Temp. data’s change amount is within [-3, 3)
11 upload(1@); '\ Upload the lower 10 bits of the processed result

12|}

combined to get temperature data

19he| ysey ‘ddy

App. task 3: Function....
....Code....

Chipset task 1: Reading temperature data (TMP125 sensor)

1| sensor getTemp{

2 busconfig(1, SPI); \\Match the pins of this chip to the Group 1 SPI interface

3 read(2); \\Read 2 bytes via SPI bus interface

4 delay(120, 2); \\According to chip’s datasheet, cach sample is separated by at least 120 ms
501}

Chipset task 2: Function

....Code....

a9Ae| 1asdiyd

Figure 4: Dual-layer sensing control profile of a TMP125
temperature sensor in an application.

each statement’s keywords, variables, and the total processing time
will be mapped to corresponding encoding. This results in the for-
mation of an indivisible AtOp. (i.e., an AtOp as summarized by
HTDL, constituting the smallest on-board operation, which con-
trols a single transition of the sensor’s internal state machine, thus
indivisible.)

Subsequently, multiple AtOps are concatenated to form the con-
trol logic for a specific task or chipset. In practical applications,
a certain correlation exists between App. and chipset. For exam-
ple, in a temperature threshold monitoring application, the App.
layer includes invoking sensor read operations (e.g., call TMP125
read), temperature evaluation, and feedback, while the chipset layer
executes data acquisition via AtOp sequences managing internal
state machine transitions. Hardware constraints (e.g., mandatory
sensor state transition delays) enforce sequential execution, where
subsequent operations proceed only after prior transitions com-
plete, necessitating an optional 12-bit timing parameter per AtOp.
Compiling these operations generates LEGO+’s application-specific
local control logic, with chipset drivers fixed per hardware selection
and App. logic adaptable to application needs.

5 TASK SCHEDULER

5.1 Control Command Design

The gateway primarily issues two types of control commands to
sensor nodes: task assignment commands and task management
commands. They have two common field of sensor node ID (identify
the node) and command type. The subsequent fields vary according
to the command type, with each command having a distinct purpose
and encoding format, as outlined below.

5.1.1 Task assignment command. Once a user defines the sensing
control profile for a sensor node, the HTDL compiler compiles it
into a binary task command stream. The sensor node cannot recog-
nizes and stores these commands until receiving the gateway’s task
assignment command. The task assignment command enables the
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Figure 5: LEGO+ Compiler.

node’s task command buffer to discern task IDs and allocate mem-
ory accordingly. For App. tasks, the command also encapsulates
execution periods and start-up delays, allowing for customizable
task scheduling. This flexibility in scheduling, especially start-up
delays for App. tasks can help mitigate uplink data collisions.

5.1.2  Task management command set. The task management com-
mand set includes the task adjustment command, task start-stop
command, data retransmission command, and status query com-
mand, which are sketched below. ©® Task adjustment command.
This command allows the user to set the execution frequency and
startup delay of the App. tasks in real-time during regular system
operation; @ Task start / stop command. With this command,
users can start and stop sensor node tasks at any time through the
gateway, which is set to broadcast mode. If the node ID specified
in the command matches the broadcast ID (1111), the command
becomes applicable to all sensor nodes. Similarly, when the App.
task ID within the command coincides with the broadcast ID (111),
the command assumes control over the initiation and cessation
of all App. tasks associated with the target sensor node; @ Data
retransmission command and status query command. When
the gateway detects an uplink data collision, it will send a data
retransmission command to failed sensor nodes, and the retrans-
mission data type (event / periodic) needs to be designated. The
status query command can enable the gateway to know the result
of a task assignment on a specific sensor node.

5.2 Multi-node Task Planning

For the extensive deployment of IoT sensor nodes, the sheer num-
ber of these nodes is expected to cause significant data collisions,
ultimately leading to a decline in network performance. Traditional
IoT sensing edge-end systems utilize an asynchronous message-
passing protocol for coordinating among sensor nodes. The timing
of uplink and downlink communications is often random and un-
predictable. However, in LEGO+, the gateway is responsible for
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all task logic, task assignment, and management for the nodes. As
a result, the gateway has a precise understanding of each sensor
node’s task information, execution timing, the number of clock
cycles consumed by commands within each task, and the clock
frequency.

Specifically, when an unpredictable data collision is encountered
(e.g., event-based task conflicts with the data upload of another task),
the task scheduler broadcasts a task stop command to all sensor
nodes to prevent further data collisions. Subsequently, the task
scheduler broadcasts an event-based data retransmission com-
mand and sends periodic task data retransmission commands
to sensor nodes that were uploading data during the collision time
period. The sensor node that receives the retransmission command
will re-upload the data after a random delay period. When the col-
lision data has been processed, the gateway will broadcast a task
start command, thus resuming the sensor nodes’ normal operation.

5.3 Command Generator

The role of the command generator is to create the atomized task
command and control command, and finally output the binary data
stream, which can be recognized by the node, via the communi-
cation interface. The command generation format is described as
follows.

Every data transmission dispatched from the gateway to the
node incorporates a preamble. The sensor node will start parsing
the following control commands only after it recognizes the pream-
ble, while synchronizing all sensor nodes to minimize the risk of
packet mis-transmission. Followed by the preamble is the control
command content, which can enable the node to identify the node
ID and control code, and to configure its other parameters. When
the control command is a task assignment command, two field,
contains the task command length and content respectively, will
be attached behind the control command.

6 HIERARCHICAL ATOMIC CONTROL
CIRCUIT

The HACC empowers the node with low redundancy and high

general-purpose advantages. This circuit is capable of assembling

target control logic driven by concise gateway commands with-

out relying on traditional general-purpose computation systems

Chong Zhang et al.

(e.g., processors). Circuit overview is illustrated in Figure 6, which
contains three main components, including a Command Dispatch
Module, Task Logic Memory Module, and Dual-layer Sensing Con-
trol Module.

1) Command Dispatch Module. This module consists of a (2+n)-
bit shift register and a 2-bit XNOR gate. Before commands are issued
by the gateway, a 2-bit command type will be added in front of
the command content. According to the type field of the incoming
command, the Command Dispatch Module will feed subsequent
commands into the corresponding modules. Specifically, when the
type is 0X (i.e., this incoming command is identified as memory com-
mand), Command Dispatch Module will instruct the multiplexer in
Task Logic Memory Module to activate the corresponding memory
area, and subsequent commands will be stored (see point 2 for de-
tails). On the other hand, when the type is 1X (i.e., this incoming
command is task execution command), Command Dispatch Module
will instruct the Dual-layer Sensing Control Module to read the
stored commands from Task Logic Memory Module and perform
the target sensing control task in the specified configuration (see
point 3 for details).

2) Task Logic Memory Module. This module consists of a multi-
plexer and a dual-layer command memory circuit. Each layer of
the memory circuit encompasses a register group, with each in-
dividual register dedicated to storing the entirety of a command,
which facilitates the execution of an App. function or a chipset
control function. Specifically, after the Command Dispatch Module
identifies the incoming command as a memory command and parses
its command content, which comprises the Addr and the command
count (cnt), the Task Logic Memory Module will direct a specified
count of subsequent commands (i.e., the output of the shift register
in Command Dispatch Module) towards the target register. The
count is indicated by the cnt field within memory command. For
example, 01+0011_001100 represents the memory command (@1,
for chipset task), pointing to the 3,.; register (011) in the chipset
task command memory layer, and 12 (001100) commands received
subsequently by the node will be stored from this register, consti-
tuting a complete chipset sensing control logic (e.g., data reading
and operating mode setting for temperature sensor chip).

3) Dual-layer Sensing Control Module. With the incorporation of
the above two modules, the gateway is capable of storing all chipset
and application data. Control logic is necessary for managing node
control within the DCSC system. Subsequently, scheduling will
enable the establishment of the desired sensor node control logic
as intended. This module consists of two circuits: one for chipset
control and another for application control. It can read commands
from Task Logic Memory Module and execute corresponding sens-
ing control operations under the drive of the 32-bit task execution
command, with the format being: 1X + 4-bit task pointer (for func-
tion selection) + 26-bit operational configuration (including 12-bit
execution frequency + 10-bit duration + 4-bit priority). For example,
the codes 10 + 0100 + 000111110100_0100101100_0011

indicates scheduling the 4, chipset function, running at a fre-
quency of 500 Hz for 300 seconds (5 minutes), and with a priority
level of 3. Upon reception of this chipset task execution command,
the Command Dispatch Module will drive the Dual-layer Sensing
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Figure 7: Prototype system of LEGO+ node.

Control Module to read pre-stored task execution command from
the 4, register at the chipset task command memory layer and
drive the chipset control circuit to run.

Based on the above design, LEGO+ reduces both communication
and computational overhead through a lightweight circuit design.
Despite the fact that controlling its local logic generation requires
the assistance of an additional layer on the gateway, this process is
only necessary when the LEGO+ nodes are first deployed or when
their functions need updating. It does not impose any additional
communication overhead on the daily operational tasks of the
nodes, and it merely affects the normal operation of the gateway.

7 IMPLEMENTATION

We implement LEGO+ gateway using a Raspberry Pi 4B with a
1.5GHz quad-core 64-bit ARM Cortex-A72 CPU, 4GB memory and
16GB TF card space, which is integrated with the same radio module
as the node. As for the LEGO+ node, as shown in Figure 7, we design
a 4-layer FR4 printed circuit board (PCB) with a set of sensor chips
for proof-of-concept.

Specifically, the motherboard of the LEGO+ node contains the
HACC (logic part, executed on a low-power AGLN125V2 FPGA
[25]) and several interfaces. The HACC is designed to be ultra-
lightweight, with its logic part (excluding registers) only taking
2.6 k logic gates. Users can use customized passive radio or COTS
active radio (e.g., WiFi, BLE, LoRa, etc.) with a UART, SPI, or GPIO
interface to connect to the HACC. Besides, we also provide a volt-
age adapter to fit the output voltage of some analog sensors, as
sometimes their output voltage standards do not match our mother-
boards. Additionally, LEGO+ can support hundreds of COTS sensor
chips and customized sensors with Standard Pins (e.g., 2.54 mm) or
USB-C interface for convenient plug-and-play.

In the initial prototype, for the purpose of being convenient to
implement, we utilize a low-power FPGA to verify the feasibility
and functionality of the proposed digital circuitry in LEGO+. This
is a common development process in the field of computer archi-
tecture. In the future, if LEGO+ can be successfully promoted and
widely adopted, we will IC-enable LEGO+ for much lower cost and
power consumption.

8 EVALUATION

In this section, we conduct extensive experiments to evaluate our
system and State-of-the-Art (SOTA) solutions.
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Figure 8: Experiment field. (left: indoor; right: outdoor.)

LEGO+ enables the direct hardware-level atomic logic orches-
tration of sensor nodes’ control logic through the creative HACC
design, thus eliminating the need to rely on the local/remote pro-
cessor. First of all, we evaluate the runtime power consumption
and task throughput. We select two representative benchmarks
from the processor-centric and -free architecture, respectively, for
comparison.

Benchmark of traditional ultra-low-power processor-centric
nodes: We let two common low-power processors, STM32L051T6
[36] and MSP430F2132 [14], serve as the processor of two processor-
centric sensor nodes. To be fair, we construct minimal system boards
for the evaluation, as development boards typically incorporate ad-
ditional peripherals that increase power consumption, which could
lead to unfair experimental conditions.

Benchmark of processor-free nodes: Next, for comparing
processor-free sensor nodes, we first select the design of R2B [22], a
novel Radio-to-SPI-Bus communication scheme to read sensor chips
with on-node SPI buses under gateway signals, as the representative
benchmark. Next, another computation-free scheme, Ekhonet [46],
is also selected to be one benchmark of processor-free nodes.

We evaluate all the benchmarks and LEGO+ using the same task,
as shown in Figure 8 including: 1) reading the 3-axis acceleration
data from the ADXL1004 sensor 6 times and computing the average
value; 2) reading temperature data from the TMP125 sensor 2 times
and computing the difference value (i.e., mirrors the temperature
change); 3) backhaul the result to the gateway. We employ the
M8831 micro-power meter [10] to measure the power consumption
of every component on the LEGO+ sensor node. We calibrate the
experimental results according to the datasheet of used sensors,
and the results of processor-free nodes are obtained by the careful
analysis of provided experimental results from their papers.

8.1 Power Consumption Comparison

8.1.1  Power consumption with passive communication. In this test-
ing, we employ the passive communication paradigm (i.e., envelope
detector for downlink reception and on-off backscatter for uplink
backhaul), and evaluate nodes’ power of sensor access control (i.e.,
computation) and communication, as depicted in Figure 9(a), 9(b)
and 9(c). We can see that LEGO+ can achieve 77.5 - 90.6% significant
reduction, despite that higher communication power, compared to
those processor-centric nodes, for a more dramatic cut-down of
78.3 - 91.5% from sensor access control. Compared to the minimal
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(average value under active BLE and passive
backscatter communication).

processor-free nodes, LEGO+ draws more current when the task
throughput is very low. However, when the task throughput be-
comes higher, LEGO+ outperforms them a lot due to the surge of
data over the air of processor-free benchmarks. Specifically, when
a task needs to be executed, LEGO+ and processor-centric architec-
ture need to transmit/receive 40-bit data, while R2B and Ekhonet
need 384 bits and 336 bits, respectively. This is because the solutions
of R2B and Ekhonet essentially rely on a remote microprocessor
on the gateway to control the on-node sensor chip, thus a large
amount of raw information that was originally exchanged between
the processor and sensor chips is transferred to the air interface,
leading to a surge in communication overhead. In addition, as an
R2B node can only achieve a maximum data rate of 200kbps, it thus
has a task throughput of only 500Hz.

8.1.2  Power consumption with active communication. We change
the radio to the BLE module, E105-BS21X, which has a maximum
data rate of 4 Mbps with 5.3 mA low current consumption. We
record node power consumption across different task throughput
levels, as shown in Figures 10(a), 10(b), and 10(c). From the results,
we can observe that LEGO+ nodes reduce power consumption by

(a) Clock freq. = 1MHz.
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Date Rate (kbps)

10 10°
Date Rate (kbps)

(b) Clock freq. = 4MHz.

Figure 12: The response time per task under different clock frequencies.

77.3% to 81.9% and 82.7% to 85.2% at task throughput rates of 100Hz
and 500Hz, respectively, compared to processor-free nodes. This
is because LEGO+ is more efficient than other processor-free so-
lutions that rely on direct control from a remote microprocessor
on the gateway side with extensive communication interaction.
Besides, for processor-based nodes that control sensing tasks lo-
cally, LEGO+ also reduces more than 70% power consumption by its
hardware-level atomic control logic orchestration, which systemati-
cally minimizes both computational and communication overheads.

8.1.3  Power breakdown per task. Next, we evaluate the power con-
sumption per task executed on nodes. From Figure 9(d) and 10(d), we
observe that the power per task becomes lower with improved task
throughput. LEGO+ outperforms all benchmarks in this evaluation,
achieving 55.2% to 94.7% lower power consumption.

Next, to better clarify where LEGO+ specifically saves energy
compared to other benchmarks, we breakdown the average energy
consumption in each part of a single task in the previous evaluation,
and summarize the details in Figure 11.

It can be observed that, benefiting from the lightweight archi-
tecture of LEGO+, the energy consumed by its static overhead and
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Table 1: Selected sensors in the evaluation

Sensor Type Functions
1 ADXL1004 3-axis Acceleration Sensor
2 | ADPD188GG | Digital Light Intensity Sensor
3 LIS2MDL Magnetic field sensor
4 MA782 Rotational Angle Sensor
5 SMT172 Temperature Sensor
6 VM1010 Low-power Microphone
7 LTC2361 12-bit Analog to Digital Converter
8 | MAX30102 Heart Rate and Blood Oxygen Saturation

sensing task control in a single task is significantly lower than
that of traditional low-power architectures (based on STM32 and
MSP430). Furthermore, although the processor-less architectures
of R2B and EknoNet achieve lower energy consumption in static
overhead and sensing task control, their communication overhead
is much higher due to their direct reliance on remote microproces-
sors at the gateway. Therefore, they are confined to backscatter
communication for low-power considerations. But when consider-
ing the average power consumption of both backscatter and BLE
communications, their overhead is significantly higher than that of
other solutions.

In contrast, the architectural design of LEGO completely elimi-
nates direct dependence on microprocessors (both local solutions at
the node side and remote ones at the gateway side); its lightweight
architecture significantly reduces local task power consumption
while avoiding an increase in communication overhead.

8.2 Task Response Time

Next, we evaluate the task response promptness of nodes. Specif-
ically, we execute the same task as §8.1 on four benchmarks and
LEGO+ node, and record the elapsed time required per task exe-
cution. To precisely evaluate the performance of each node, the
results eliminate the measurement delay inherent to the sensor
itself, thereby mitigating the confounding effects introduced by
the deployed sensors. We set the nodes to run at two fixed clock
frequencies of 1IMHz and 4MHz (notably, R2B’s clock is provided
by the gateway, so its clock frequency is actually equal to its data
rate. However, since the maximum data rate of R2B is 200 kbps, it
is not tested under a 4 Mbps clock), vary the communication data
rate between the gateway and the nodes, and record the elapsed
time required for the tasks. The above procedure is looped 1000
times, and we take the average value as the experimental result, as
shown in Figure 12.

The experimental results show that the LEGO+ node can com-
plete tasks faster than both the traditional processor-centric node
and the processor-free node at the same communication data rate
and local clock frequency. The reason for this is twofold. First,
compared to traditional processor-centric nodes, the LEGO+ node
employs a direct hardware circuit programming method for control
logic, which is more efficient than the indirect method used by
traditional nodes. The latter relies on software programs running
on the processor to simulate the desired control logic. Specifically,
the LEGO+ node completes a single task in just 280 clock cycles,
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Figure 13: Energy consumption and time cost for a single
task under different complexities (with different numbers of
sensors needing to be controlled).

whereas the STM32L051T6 processor requires 384 instruction cycles.
Given that the STM32L051T6’s command execution performance
is 0.95 DMIPS (meaning it can execute only 0.95 million commands
per million clock cycles), it effectively takes over 400 clock cycles
to accomplish the same task. Second, the total amount of data to
be transferred by LEGO+ is only slightly higher than that of the
traditional processor-centric node. Specifically, only a small amount
of control commands need to be conveyed during configuration,
while the data transmission load during actual task execution is
almost the same as that of the traditional node. As a result, under
the same communication data rate and local clock, LEGO+ has
achieved a 20% to 48% improvement in task throughput compared
to the traditional node.

Meanwhile, for processor-free nodes, the LEGO+ node oper-
ates independently of the gateway microprocessor, whereas the
processor-free node must interact extensively with the gateway
to exchange substantial amounts of raw data. LEGO+ node trans-
mits only 80 bits of data per task, in contrast to R2B and Ekhonet,
which require the transmission of hundreds of bits of raw data.
For R2B, all task data is managed by the gateway communication,
making its task duration nearly equivalent to its communication
time. However, due to the significant volume of data, it must trans-
fer — encompassing not only the raw data from sensors but also
various signals (such as chip select/interrupt) necessary for sensor
1/O control, which are implemented through coding — the overall
process is considerably prolonged. While Ekhonet transmits slightly
less data than R2B, it still far exceeds the data volume of LEGO+
nodes. Ekhonet must cache raw data locally, and the local clock
cycles consumed are proportional to the amount of communication
data. As a result, in some scenarios, its total time consumption
can be marginally higher than that of the R2B node. Therefore, for
processor-free nodes, the LEGO+ node can reduce task time by
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Figure 14: Collision rate under different data rates and deployment conditions.

48.1% to 79.5% under the same communication data rate and local
clock frequency. These improvements of LEGO+ underscore the
realization of the high task efficiency envisioned in §1.

8.3 Application performance under different
task complexity

8.3.1 Energy consumption. Next, we evaluate the application per-
formance of our LEGO+ node and the benchmarks across different
task complexities, including power consumption and response effi-
ciency.

Specifically, in practical applications, the complexity of tasks is
positively correlated with the number of sensor chips that need to
be controlled. For this reason, we select a total of 8 different sensor
chips for testing (as summarized in Table 1). We first deploy the
first sensor on each node and gradually add subsequent sensors
that need to be controlled on the node to change the task complex-
ity. In the evaluation, each task involves reading all the onboard
sensors and computing the average of 4 consecutive readings to
reduce sensing errors and improve accuracy, and then making data
aggregation from the controlled sensors and uploading it to the
gateway. Considering that the benchmarks of R2B and Ekhonet are
tailored for low-power passive communication, hence we use the
same passive communication configurations in Section 8.1.1. The
evaluation results are recorded in Figure 13(a).

We find that LEGO+ exhibits the lowest power consumption, as
well as the slowest increase in power consumption as task com-
plexity (i.e., the number of sensors requiring control) increases.
Although the processor-free architectures of R2B and EkhoNet
also exhibit lower power consumption compared to traditional
architectures (based on msp430 and stm32), their overall power
consumption is still significantly higher than that of LEGO+, as
they essentially rely on a remote microprocessor at the gateway
to control local sensors, resulting in substantial communication
overhead (despite using ultra-low-power backscatter communica-
tion). Furthermore, as task complexity increases, their overall power
consumption rises more rapidly due to the need for increased in-
formation exchange with the gateway to control the additional
deployed sensors. In contrast, LEGO+ handles tasks locally with
its minimalist circuit design, achieving a simplified architecture
without significantly increasing communication overhead, thus
attaining the lowest overall power consumption.

8.3.2  Response performance. Next, we evaluate the response per-
formance of each node under different task complexities (with a

different number of sensors required to be controlled). We record
the time elapsed from when a command is issued by the gateway
until the data is received back. Meanwhile, to avoid interference
introduced by the sensors themselves and to obtain more precise
results regarding the response performance of each node, we ex-
clude the time required for the sensors’ own measurements. The
results are shown in Figure 13(b).

We can see that LEGO+ achieves the lowest response time under
different task complexities, which is also even slightly lower than
that of conventional processor-based architectures. This is bene-
fited by the fact that LEGO+ directly generates control logic at the
hardware level, which is more efficient than running embedded
programs on a general-purpose computing platform (microproces-
sor) to "indirectly” generate the target control logic. By contrast,
R2B and EkhoNet have the longest response times because they
essentially rely on remote microprocessors at the gateway side for
control; the transmission of a large amount of raw information and
data significantly increases the time cost. Finally, despite LEGO+
also introducing an extra layer on the gateway to manage its local
logic generation, it is only executed once when the LEGO+ node
is first deployed and when subsequent functional updates are re-
quired, which would not increases communication overhead and
response time for daily tasks.

8.4 Multi-node Networking Performance

Next, we evaluate the networking performance of the system. We
conduct the testing under both unobstructed conditions and in
complex obstruction scenarios. We configure each node to read
data from the accelerometer ADXL1004, the microphone VM1010,
and the 12-bit ADC LTC2361 for a random number of times between
1 and 16, at a sampling rate of 200 Hz. We then calculate the average
value and upload it back to the gateway. Besides, to evaluate the
performance under harsh application conditions, we employed low-
power but vulnerable backscatter communication.

For the scenario, we deploy the gateway by the lake as shown in
Figure 8, and the nodes are deployed within the forest on the same
side as the gateway. There is a 6-meter-wide grassy area by the lake,
so when the nodes are deployed within 6 meters of the gateway,
the signal transmission faces no obstruction. However, when the
distance exceeds that, the nodes are deployed within the forest,
resulting in significant obstruction of the signal during transmission.
We deploy varying numbers of our LEGO+ nodes and conventional
nodes (based on MSP430 or STM32) at different distances from the
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gateway, and conduct evaluations at communication data rates of
20 kbps and 100 kbps, respectively. We record the collision rate
during task execution, as shown in Figure 14.

It can be observed that, under the same experimental conditions,
the collision rate of LEGO+ is consistently lower than that of tra-
ditional nodes. This is attributed to the anti-collision mechanism
integrated into the multi-node task scheduler (see §5) in our LEGO+
design, which effectively reduces the collision rate through coordi-
nated task management. However, when the nodes are deployed
beyond eight meters (entering the forest that presents complex
obstructions in data transmission), the collision rates for all nodes
increase. This is due to the unstable signal transmission leading to
packet loss, causing the device to need to retransmit, which in turn
elevates the collision rate.

In contrust, benefiting from the anti-collision coordination mech-
anism in LEGO+, its collision rate still increases at the slowest pace.
Specifically, at a communication data rate of 20 kbps and a distance
of 30 meters from the gateway, the packet collision rate for 16
LEGO+ nodes is below 10%, whereas that of traditional nodes ex-
ceeds 30%. At 100 kbps, as the transmission of data packets reduces,
the collision rate decreases, but LEGO+ also achieves the lowest
value compared to that of traditional nodes. Moreover, benefiting
from the low-power architecture, when data collisions occur, the en-
ergy consumption for retransmission in LEGO+ is also lower than
that of traditional architectures. Therefore, LEGO+ is conducive to
large-scale applications.

Next, to verify the theoretical performance of networking in
large-scale node deployment, we conduct a simulation experiment.
Specifically, based on the operational mechanism of LEGO+ nodes,
we implement a simulation model on a computer. The LEGO+ node
clock frequency is set to 200 kHz, and the experiment is carried
out at communication data rates of 5 kbps, 20 kbps, and 100 kbps.
The task collision rate, which varies with the number of nodes at
different data rates, is recorded and is shown in Figure 15.

The results show that the multi-node control performance is
significantly improved with our task prediction scheme. At 5kbps,
without the task prediction scheme, due to the random upload
of node data, even if only 10 nodes are running simultaneously,
the task packet collision rate is as high as 27.07%. However, after
adopting it, the gateway can predict the upload time of the task
data packet according to nodes’ hardware parameters and task
plan made by itself. At 20kbps and 100kbps, it shows a significant
advantage, with data collisions occurring after 120 and 500 nodes,
respectively. In contrast, without the task prediction, even at 100
kbps, 13% of the data from 10 nodes will collide.
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Figure 16: Time cost for learning HTDL.

8.5 Easy-to-learn of HTDL

We design LEGO+ to simplify not only the architecture but also
to streamline the development process. Specifically, the HTDL in
LEGO-+ is directly designed for controlling sensor chips and per-
forming sensing tasks, which contains only a few keywords and has
a simple syntax, making it convenient for use in practical sensing
applications.

To evaluate the accessibility of learning HTDL, we recruited 20
computer science students (comprising 10 first-year students and
10 graduating seniors) as volunteers. We systematically document
the time required from their initial exposure to HTDL until they
are able to develop control programs for the sensing tasks on the
sensor chip in Section 8.1 using the framework. The results are
illustrated in Figure 16.

We find that HTDL is easy to learn, as the learning time for 17
volunteers (85%) is less than 2.7 hours. For first-year students, the
average learning time is 2.2 hours, while for graduates, the time
cost is only 1.6 hours. Besides, as HTDL is directly oriented towards
sensing tasks. Hence, to scale the system with new functions in
practical applications, developers only need to plug in new sensor
chips and focus on implementing the sensing task itself. It is user-
friendly and conducive to large-scale applications.

9 RELATED WORK

Today, low-end IoT sensor nodes hold the potential for realizing the
real ubiquitous sensing expectations benefiting from their low-cost
advantage. To reduce application cost and power consumption, a
rich set of efforts have been made to simplify IoT sensor nodes,
mainly in three ways:

Design of hardware abstracted systems: To reduce power
consumption, many solutions have focused on hardware-abstracted
processing systems, such as deploying tiny operating systems (Tiny
0S) [4,7, 29, 45] on the sensor nodes. However, while TinyOS offers
great versatility and flexibility for various applications, its inher-
ent complexity is higher than that required for lightweight sens-
ing tasks such as temperature, humidity, and acceleration sensing.
Therefore, it is not efficient for the lightweight sensing scenarios
targeted by LEGO+.

Removing the computation: To reduce power consumption,
many attempts [26, 27, 33, 38] have been made to directly control
RF switches with the output voltage of on-board analog sensors
for processor-free backscatter communication, so as to upload the
target sensory data without requiring a local microprocessor on the
nodes. However, such an approach necessitates the customization
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of an RF front-end solely for a specific sensor chip and application,
inherently limiting its flexibility to adapt to diverse contexts.

Shifting the computation to the gateway: To possess a certain
degree of universality while simplifying the architecture, some
efforts try to simplify the on-board computation by shifting it to
the gateway, including radio chain components [23, 35, 41], data
streaming [46] and sensor control [21, 22, 24, 44]. However, in
such an approach, the universal compatibility of sensor nodes is
facilitated by a remote microprocessor situated on the gateway side,
albeit accompanied by significant communication overheads. When
it works, the gateway executes the intended embedded program via
its microprocessor and converts the internal signals into wireless
signals for interaction with the sensor nodes, thereby facilitating
control over the sensor chips located on the node side. This process
is accompanied by significant communication overheads, including
raw data exchange and control interaction overhead.

While there are also ultra-low power analog-only approaches [5,
20], they essentially still rely on remote microprocessors reading
local analog sensors directly at nodes via gateways. On the one
hand, their RF front-end must be customized or finely tuned to
accommodate specific analog sensors, hence lacking universality;
on the other hand, they necessitate the transmission of a substantial
amount of raw data and control information, thereby also incurring
significant communication overhead in practical applications.

Hence, the aforementioned solutions mainly focus on ultra-low-
power backscatter communications [3, 8, 9, 15-17, 30, 31, 37] for
low-power considerations. However, owing to the low amplitude of
the backscattered signal, these efforts not only demand the use of a
costly high-sensitivity receiver but also result in short-range and
unreliable wireless communication, thereby limiting their large-
scale applicability.

In contrast, with the novel architectural design, LEGO+ removes
on-board computation redundancy while maintaining low com-
munication overhead for diverse IoT applications through direct
hardware-level atomic logic orchestration.

10 DISCUSSION

We discuss four key concerns about the current system prototype.

Sensing function and application scenarios. In the initial
stage, we designed LEGO+ as a cost-effective solution for light-
weight sensing applications. Its control circuit (HACC) incorporates
the necessary atomic operation units to orchestrate the required
control logic for digital sensors, and it can also control analog
sensors by deploying an analog-to-digital converter (ADC) chip.
Therefore, theoretically, arbitrary sensor logic can be implemented
using HACC without incurring excessive hardware costs for light-
weight sensing tasks. In the future, we may also design pluggable
hardware units for complex tasks (e.g., image/video capture and
processing) for users in need.

System scalability. The lightweight architectural design of
LEGO+ not only simplifies node design but also eliminates the cum-
bersome development process found in traditional processor-based
systems, where on-board sensor chips can be directly controlled
by a simple circuit, without the need to program a microprocessor.
Therefore, to scale the system with new functions, developers only
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need to plug in new sensor chips and focus on the implementa-
tion of the sensing task itself. It is easy to use and conducive to
large-scale applications. Besides, since each LEGO+ node operates
independently, the deployment scale of the nodes does not impact
the complexity of their local tasks.

11 CONCLUSION

In this paper, we present LEGO+, an ultra-lightweight and univer-
sally applicable control architecture tailored for a broad spectrum of
IoT sensor-based applications characterized by multi-layered func-
tionality and swift re-configurability. This architecture is distinctive
in its ability to directly synthesize the necessary control logic within
a minimalist hardware framework, thereby circumventing the need
for executing software on intricate, general-purpose computing
platforms. To achieve this, we undertake several key initiatives:
Firstly, we devise a novel Hierarchical Task Description Language
and harness edge gateways to facilitate the seamless orchestration
of end-side task logic. Subsequently, we innovate a hierarchical
control circuit, which, under the direction of gateway instructions,
outputs the requisite control logic for a diverse array of sensing
tasks through direct, hardware-level atomic logic orchestration.
Furthermore, we develop a suite of task scheduling mechanisms
aimed at augmenting the overall efficiency of controlling multiple
sensor nodes. Our experimental results show that the LEGO+ archi-
tecture achieves a remarkable 86% reduction in the overall power
consumption of the node, while enhancing task efficiency by 49%,
which sheds light to effortless IoT sensing system deployment.
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